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Abstract— Stroke survivors frequently face the challenge
of regaining hand-grasping functions, which are crucial for
performing daily activities. While Functional Electrical Stim-
ulation (FES) has demonstrated promise for hand function
recovery, the application of online control methods tailored
to varied daily grasps remains underexplored. In response,
our study presents a refined framework utilizing an inertial
measurement unit (IMU) for the real-time recognition of grasp
intentions in stroke patients. Data on arm trajectories and
orientations preceding diverse grasping actions were gathered
from three healthy individuals, segmented by acceleration to
determine high-accuracy intervals for grasp prediction. The
Support Vector Classification (SVC) model emerged as a
superior method for intent recognition. By segmenting data
based on acceleration, our model’s general accuracy improved.
Moreover, the time required to achieve a stable accuracy
rate exceeding 95% was reduced from 0.8s to 0.2s. This
research lays the groundwork for future advancements in online
gesture recognition systems. The successful implementation of
FES based on SVC-model predictions mark a significant step
toward intuitive and adaptive rehabilitation therapies for stroke
patients.

I. INTRODUCTION

Stroke is among the most prevalent neurological disor-
ders worldwide, leading to long-term physical disabilities,
especially significant impairment in hand motor functions.
This impairment severely restricts patients’ ability to perform
daily activities, affecting their quality of life. In recent years,
the emergence of wearable robotic devices [1], [2], particu-
larly wearable devices, has introduced new possibilities for
the rehabilitation of hand motor functions in stroke survivors
[3], [4]. These devices, by physically assisting or augmenting
limb movements, have opened new avenues for improving
the stroke rehabilitation process [S]-[7].
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Wearable exoskeleton devices are designed to provide
necessary external force support to the finger joints, assisting
users in performing grasping actions [8]-[10]. Despite ad-
vancements in enhancing grip strength and improving hand
coordination, these devices also face significant challenges
[11]. The primary issues include the bulkiness of the devices,
which restricts the user’s range of hand movements, and
discomfort in wearing, which can affect the device’s daily
usage and rehabilitation effectiveness [12].

Compared to physical assistance devices, electrical stimu-
lation offers a different approach to rehabilitation by directly
targeting muscles or nerves to facilitate limb movement [13]—
[15]. Electrical stimulation can be adjusted according to the
specific needs of patients, offering personalized rehabilitation
therapy [16]. Significant progress has been made in recent
years regarding the use of electrical stimulation in improving
hand function in stroke patients [5], [13]. However, precise
control of electrical stimulation to accommodate various
rehabilitation needs remains a challenge.

To enhance the effectiveness and adaptability of electrical
stimulation, researchers have explored various control meth-
ods, including manual adjustment, electromyography (EMG)
control, visual control, electroencephalography (EEG) con-
trol, and control based on Inertial Measurement Units (IMU)
[17]-[19]. Each method has its advantages; for instance,
EMG and EEG control can adjust stimulation based on
physiological signals, while visual and IMU controls can
adjust based on the actual execution of movements [20], [21].
Yet, achieving accurate and real-time control, especially for a
diverse range of daily grasping gestures, remains a technical
and practical challenge [22]-[24].

Although electrical stimulation has shown great potential
for hand function rehabilitation, existing studies often lack an
online electrical stimulation control method for daily diverse
hand gesture grasping. Addressing this research gap, this
study proposes a novel method based on IMU signal for
predicting multiple hand gesture intentions and online electri-
cal stimulation control. Utilizing advanced signal processing
and machine learning techniques, this method achieves high
accuracy in gesture recognition and real-time adjustment of
electrical stimulation, offering a more effective and adaptable
daily hand function rehabilitation solution for stroke patients.
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Fig. 1.  General process of collecting IMU data to train Scalar Vector

Classification (SVC) model and predict the intention result, therefore using
the FES device for stimulation to form certain grasping gesture.

II. MATERIAL AND METHODS
A. System Overview

In this research, we collect arm trajectory motion data
from patients before performing various types of grasps
using an inertial IMU. The data is then segmented based on
acceleration and divided into different time periods. Machine
learning techniques are applied to these segmented datasets.
By comparing the accuracy of models trained on data from
each time segment, we identify specific time periods that
demonstrate high accuracy. These selected time periods are
then used to determine which type of grasp the patient is
attempting to perform. Following this determination, Func-
tional Electrical Stimulation (FES) is employed to facilitate
the identified grasp, see Fig. 1.

Data was collected using the IMU900 model. IMU900 is
a small-sized nine-axis attitude sensor module compatible
with Bluetooth and serial communication interfaces. This
module integrates various sensors such as accelerometers,
gyroscopes, and magnetometers to provide precise attitude
data. The data collected includes timestamps, absolute accel-
eration, acceleration along the X, y, and z axes, and angular
velocity along the X, y, and z axes. The IMU was placed at
the foremost part of the forearm, ensuring that movements
of the hand did not affect the IMU’s readings.

The dataset encompasses motions with different intents,
including holding a cup (labeled as 0), grabbing a larger
basin (labeled as 1), pull out a drawer (labeled as 2), picking
up skincare products (labeled as 3), pressing a button (labeled
as 4), grasping a rod (labeled as 5), and lifting a lamp
(labeled as 6). For each data set, the starting position of
the arm was standardized as much as possible to maintain
consistency across trials. Data recording commenced as the
arm began moving from the start position to a position
characteristic of grasping the specified object. The recording
stopped once the arm reached the final position, with each
dataset approximately spanning 2s.

B. Intent Recognition

1) Data Processing: The absolute acceleration data ob-
tained from the IMU served as a reference for determining
the initiation of arm movement, based on an analysis of
experimental data. We established a threshold where an
absolute acceleration greater than 0.5 m/s? indicated the

Algorithm Time-Segmented Feature Extraction and SVC Model Classification
Acc+ {}it+{}; ST=0 > Initialize accuracy, time list, start Time
Segment data by acceleration threshold
for ST < maxTime; ST += windowSize do

Extract features and assign labels
Combine all features into one dataset
Combine all labels into one label set
Split the dataset into training and testing sets
Optimize SVC parameters with grid search on the training set
Fit SVC model and predict on the testing set to get accuracy
Acc + {accuracy}; t + {ST}
end for
Plot Acc and ¢

Fig. 2. Pseudocode of traning the SVC model with time-segmented dataset
and plot the accuracy corresponding to the start time.

start of movement, marking this as the starting point. Once
movement commenced, we calculated the velocity in the
X, Yy, and z directions by integrating the acceleration data
from the starting point. A subsequent integration of these
velocities provided us with the distances traveled in each
direction, representing the trajectory of the arm. Similarly, by
integrating the angular velocities in the X, y, and z directions
from the starting point, we obtained the angles in each axis,
representing the orientation of the arm.

Such processing of the input data imbues it with practical
physical significance, enhancing the accuracy of classifica-
tion and making the data more comprehensible. Initially, we
used data that was not segmented by acceleration to verify
the feasibility of our approach. After confirming its viability,
we proceeded with data segmented by acceleration. The IMU
data for different gestures was segmented using a window
size of 0.1s, allowing for a more refined analysis of the
arm’s motion for intent recognition.

2) Machine Learning Process: As Fig. 2 shows, starting
from the first window and moving forward, each window ne-
cessitates the retraining of the model. Each window contains
data for seven different grasping intentions, with each set
comprising 20 samples. Following the data processing steps
described previously, we obtain the distances and angles
relative to the starting point in the X, y, and z axes for each
sample. These represent the trajectory and orientation of the
arm, respectively. The mean, standard deviation, maximum,
and minimum of the distances and angles in the xyz axes are
extracted as features. Different labels are assigned to the data
sets corresponding to different grasping intentions. Thirty
percent of the total data is used for testing, while seventy
percent is used for training the model. After considering a
variety of machine learning models, including Support Vector
Classification (SVC), Decision Trees and Gradient Boosting,
we found that SVC demonstrated higher and more consistent
accuracy in later time windows.

SVC is a powerful method for classification that seeks
the best hyperplane in the feature space of the dataset to
differentiate between data points of different categories. SVC
is particularly suitable for complex, small to medium-sized
classification problems. It enhances the model’s applicabil-
ity and flexibility by using different kernel functions to
handle non-linearly separable data. To identify the optimal
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Fig. 3. Seven pairs of electrodes are strategically positioned on the right
forearm and palm to precisely stimulate targeted muscles for enhanced mus-
cle activation and rehabilitation. Electrodes of the same number correspond
to the same group, regardless of positive and negative poles.

parameter configuration for the SVC model, we employed
GridSearchCV, a method that tests different parameter com-
binations through cross-validation to select the best set of
parameters. GridSearchCV systematically explores various
parameter combinations, determining the optimal model set-
tings by assessing the performance of each combination. For
SVC, key parameters include the regularization parameter C
(which controls the penalty strength of the error term), the
kernel type (such as linear, polynomial, radial basis function,
etc.), and gamma (relevant only for the radial basis function
kernel, controlling the influence range of a single training
sample). Through GridSearchCV, we were able to determine
an optimal set of parameters that enabled the SVC to achieve
the best performance on our dataset.

C. Functional Electrical Stimulation

Electrical stimulation is a therapeutic technique used in
upper limb rehabilitation for post-stroke patients, involving
the application of electrical currents via electrodes placed
on the affected limb. In this method, seven pairs of elec-
trodes are strategically placed on the affected upper limb.
These electrodes deliver electrical impulses at a frequency
of 90Hz, with the amplitude typically ranging between
8mA to 20mA. These impulses stimulate the nerves and
muscles, promoting muscle contraction and facilitating motor
recovery. By targeting specific muscle groups, electrical
stimulation helps improve muscle strength, coordination, and
function in the affected limb. Additionally, it can enhance
sensory perception and reduce spasticity, contributing to
overall rehabilitation outcomes. Electrical stimulation is of-
ten used in conjunction with traditional therapy methods,
offering a non-invasive and customizable approach to upper
limb rehabilitation post-stroke, see Fig. 3.
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Fig. 4. First participant’s accuracy of different models when data was not
segmented according to acceleration threshold.

III. RESULTS AND DISCUSSION

A. Data Collection

In this experiment, a total of three participants were
involved. Written informed consent was acquired from all
participants before the commencement of any experimental
activities. The study’s protocol received approval and was
overseen by the Sustech Medical Ethics Committee, with an
approval number of 20230226 on the date of 2023/12/25.
We designed seven distinct grasping intentions for different
objects. For each grasping intention, each participant col-
lected 20 sets of data, with each set lasting approximately
2. Participants continuously collected 20 sets of data for
the same grasping intention, taking a 2's break between each
set. After completing the data collection for one grasping
intention, participants rested for 1 minute before proceeding
to the next. The total duration of data collection for a single
participant was approximately 50 min.

B. Classification Results

Fig. 4 shows that when the data was not segmented
by acceleration thresholds, and start time increment 0.1s
window size, the accuracy of the SVC model was below 90 %
before 0.7s. However, as time increased, the classification
performance of the SVC improved significantly. After 1
second, the accuracy stabilized above 95 %, indicating a good
classification performance and a noticeably higher accuracy
compared to other models.

Fig. 5 shows that upon training with data segmented by
acceleration thresholds, and start time increment 0.1s win-
dow size, an improvement in accuracy was observed across
all models. Despite this, other models remained unstable.
The SVC model, while exhibiting high accuracy in the early
stages, maintained a stable accuracy greater than 95 % after
the time window moved past 0.6s. And Fig. 6 shows the
average confusion matrix of three participants using SVC
model when start time is 0.6s, and the general accuracy is
95.5 %. The actions of grabbing a larger basin, picking up
skincare products, and pressing a button have been assigned
the labels 1, 3, and 4, respectively. The analysis of the
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Model Accuracy Over Time (segmented) Window Size: 0.1s

100
90
L 80
>
8
‘5 70
Q
Q
<
60
Decision Tree
50 Gradient Boosting
svc
0.0 0.2 0.4 0.6 0.8 1.0 12
Start Time (s)
Fig. 5.  First participant’s accuracy of different models when data was
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Average Confusion Matrix

1.0
o LU 0.0% 00% 00% 00% 0.0% 0.0%
- - 0.0% 0.0% 14.3% 0.0% 0.0% 0.0% 0.8
~ - 0.0% 0.0% 0.0% 0.0%
” 0.6
2
8 w- 0.0% 53% 10.5% 0.0% 0.0%
3
= - 0.4
+- 0.0% 0.0% 00% 4.8% 0.0% 0.0%
n- 0.0% 0.0% 00% 0.0% LI 0.0% | 0.2
o - 0.0% 0.0% 00% 00% 0.0% 100.0%
| | | | | | -0.0

0 1 2 3 4 5 [}
Predicted labels

Fig. 6. Average confusion matrix of three participants using SVC model
with segmented dataset when start time is 0.6s.

average confusion matrix, as presented in Fig. 6, reveals pro-
nounced instances of misclassification among these activities.
This misclassification can be attributed to the similarities in
the arm’s trajectory and orientation during the execution of
these motions, leading to challenges in achieving distinct
classification for these specific actions.

IV. CONCLUSION

Stroke patients frequently face the challenge of being
unable to perform hand grasps, a critical function for daily
activities. Our research has delved into the potential of
utilizing an IMU in conjunction with SVC machine learning
algorithms and FES to facilitate the real-time identification
of grasping intents in stroke patients, yielding high and
consistent accuracy rates.

A threshold based on absolute acceleration was employed
to exclude data representing a lack of motion. Through in-
tegration, we were able to derive meaningful representations
of the arm’s trajectory and orientation.

Our initial models trained on unsegmented data were
instrumental in demonstrating the viability of our approach.
The SVC model, in particular, showcased a consistent in-

crease in accuracy over time, affirming its superiority. Upon
refining the training data through acceleration threshold
segmentation, the SVC model not only upheld its exceptional
performance but also exhibited a marked improvement in
overall efficacy. Notably, it quickly reached a high level
of accuracy above 90% in 0.2s, maintaining this with
remarkable stability. In contrast, alternative models displayed
significant fluctuations in accuracy, underscoring the SVC
model’s robustness and reliability in our study’s context.

Hence, the SVC emerged as the most fitting model for our
methodology, attaining a remarkable accuracy rate exceeding
97.5% post the 0.6s mark. This investigation has not only
affirmed the viability of our real-time intent recognition
system for grasping but has also solidified the foundation
for forthcoming endeavors in this arena.

REFERENCES

[1]1 P. G. S. Alva, S. Muceli, S. F. Atashzar, L. William, and D. Farina,
“Wearable multichannel haptic device for encoding proprioception in

the upper limb,” J. Neural Eng., vol. 17, no. 5, p. 056035, 2020.

[2] T. Ward, N. Grabham, C. Freeman, Y. Wei, A.-M. Hughes, C. Power,
J. Tudor, and K. Yang, “Multichannel biphasic muscle stimulation
system for post stroke rehabilitation,” Electronics, vol. 9, no. 7, 2020.

[3] S. C. Colachis IV, M. A. Bockbrader, M. Zhang, D. A. Friedenberg,
N. V. Annetta, M. A. Schwemmer, N. D. Skomrock, W. J. Mysiw,
A.R. Rezai, H. S. Bresler et al., “Dexterous control of seven functional
hand movements using cortically-controlled transcutaneous muscle
stimulation in a person with tetraplegia,” Front. Neurosci., vol. 12,
p. 208, 2018.

[4] D. A. Friedenberg, M. A. Schwemmer, A. J. Landgraf, N. V. Annetta,
M. A. Bockbrader, C. E. Bouton, M. Zhang, A. R. Rezai, W. J. Mysiw,
H. S. Bresler et al., “Neuroprosthetic-enabled control of graded arm
muscle contraction in a paralyzed human,” Sci. Rep., vol. 7, no. 1, p.
8386, 2017.

[5] C. E. Bouton, A. Shaikhouni, N. V. Annetta, M. A. Bockbrader, D. A.
Friedenberg, D. M. Nielson, G. Sharma, P. B. Sederberg, B. C. Glenn,
W. J. Mysiw et al., “Restoring cortical control of functional movement
in a human with quadriplegia,” Nature, vol. 533, no. 7602, pp. 247—
250, 2016.

[6] A. B. Ajiboye, F. R. Willett, D. R. Young, W. D. Memberg, B. A.
Murphy, J. P. Miller, B. L. Walter, J. A. Sweet, H. A. Hoyen, M. W.
Keith ez al., “Restoration of reaching and grasping movements through
brain-controlled muscle stimulation in a person with tetraplegia: a
proof-of-concept demonstration,” Lancet, vol. 389, no. 10081, pp.
1821-1830, 2017.

[71 N. D. Skomrock, M. A. Schwemmer, J. E. Ting, H. R. Trivedi,

G. Sharma, M. A. Bockbrader, and D. A. Friedenberg, “A characteriza-

tion of brain-computer interface performance trade-offs using support

vector machines and deep neural networks to decode movement

intent,” Front. Neurosci., p. 763, 2018.

Y. Wang, B. Metcalfe, Y. Zhao, and D. Zhang, “An assistive system

for upper limb motion combining functional electrical stimulation and

robotic exoskeleton,” IEEE Trans. Med. Robot. Bionics, vol. 2, no. 2,

pp. 260-268, 2020.

N. Bhagat, K. King, R. Ramdeo, A. Stein, and C. Bouton, “Determin-

ing grasp selection from arm trajectories via deep learning to enable

functional hand movement in tetraplegia,” Bioelectron. Med., vol. 6,

pp. 1-8, 2020.

[10] X. Tang, Y. Liu, C. Lv, and D. Sun, “Hand motion classification using
a multi-channel surface electromyography sensor,” Sensors, vol. 12,
no. 2, pp. 1130-1147, 2012.

[11] Y. Zheng and X. Hu, “Elicited finger and wrist extension through
transcutaneous radial nerve stimulation,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 27, no. 9, pp. 1875-1882, 2019.

[12] D. Copaci, F. Martin, L. Moreno, and D. Blanco, “Sma based elbow
exoskeleton for rehabilitation therapy and patient evaluation,” IEEE
Access, vol. 7, pp. 31473-31484, 2019.

[8

[t}

[9

—

186
Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 14,2025 at 07:41:16 UTC from IEEE Xplore. Restrictions apply.



[13] H. Qu, Y. Xie, X. Liu, M. Hao, Y. Bao, and Q. Xie, “Development
of network-based multichannel neuromuscular electrical stimulation
system for stroke rehabilitation,” J. Rehabil. Res. Dev., vol. 53, no. 2,
p- 263, 2016.

[14] T. Keller, M. Lawrence, A. Kuhn, and M. Morari, “New multi-channel
transcutaneous electrical stimulation technology for rehabilitation,” in
Int. Conf. IEEE Eng. Med. Biol. Soc., 2006, pp. 194-197.

[15] U. Hoffmann, M. Deinhofer, and T. Keller, “Automatic determination
of parameters for multipad functional electrical stimulation: Applica-
tion to hand opening and closing,” in Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc., 2012, pp. 1859-1863.

[16] D. Yang, Q. Huang, Z. Jiang, and L. Jiang, “Design of multi-channel
electrical stimulator integrated with online impedance measurement,”
J. Med. Biol. Eng., vol. 40, pp. 943-950, 2020.

[17] M. Bockbrader, N. Annetta, D. Friedenberg, M. Schwemmer,
N. Skomrock, S. Colachis IV, M. Zhang, C. Bouton, A. Rezai,
G. Sharma et al., “Clinically significant gains in skillful grasp co-
ordination by an individual with tetraplegia using an implanted brain-
computer interface with forearm transcutaneous muscle stimulation,”
Arch. Phys. Med. Rehabil., vol. 100, no. 7, pp. 1201-1217, 2019.

[18] H. Shin and X. Hu, “Multichannel nerve stimulation for diverse
activation of finger flexors,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 12, pp. 2361-2368, 2019.

[19] A. Crema, N. MaleSevi¢, 1. Furfaro, F. Raschella, A. Pedrocchi,
and S. Micera, “A wearable multi-site system for nmes-based hand
function restoration,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26,
no. 2, pp. 428-440, 2017.

[20] G. Marco, B. Alberto, and V. Taian, “Surface emg and muscle fatigue:
multi-channel approaches to the study of myoelectric manifestations
of muscle fatigue,” Physiol. Meas., vol. 38, no. 5, p. R27, 2017.

[21] N. Duan, L.-Z. Liu, X.-J. Yu, Q. Li, and S.-C. Yeh, “Classification of
multichannel surface-electromyography signals based on convolutional
neural networks,” J. Ind. Inf. Integr., vol. 15, pp. 201-206, 2019.

[22] “Stimulation map for control of functional grasp based on multi-
channel emg recordings,” Med. Eng. Phys., vol. 38, no. 11, pp. 1251—
1259, 2016.

[23] M. A. Schwemmer, N. D. Skomrock, P. B. Sederberg, J. E. Ting,
G. Sharma, M. A. Bockbrader, and D. A. Friedenberg, “Meeting brain—
computer interface user performance expectations using a deep neural
network decoding framework,” Nat. Med., vol. 24, no. 11, pp. 1669—
1676, 2018.

[24] P. D. Ganzer, S. C. Colachis, M. A. Schwemmer, D. A. Friedenberg,
C. F. Dunlap, C. E. Swiftney, A. F. Jacobowitz, D. J. Weber, M. A.
Bockbrader, and G. Sharma, “Restoring the sense of touch using a
sensorimotor demultiplexing neural interface,” Cell, vol. 181, no. 4,
pp. 763-773, 2020.

187
Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on March 14,2025 at 07:41:16 UTC from IEEE Xplore. Restrictions apply.



